
The cjw-latex Macro Collection∗

Colin J. Wynne†

1998/09/01

Contents
1 General macros 1

1.1 Package initialization . 2
1.2 General definitions . 3
1.3 Box formatting . 6
1.4 Abbreviations, etc. 7
1.5 Dates . 8
1.6 Page styles and titles . 8
1.7 Text formatting . 8

1.7.1 Timelines . 8
1.7.2 Mathematical declarations 9
1.7.3 Problems and examples . 12
1.7.4 Footnotes . 15
1.7.5 Text displays . 15

1.8 Verbatim inclusions . 15
1.9 Initialization . 16

2 Math macros 16
2.1 Package initialization . 17
2.2 Miscellaneous macros . 18
2.3 Combinatorics . 20
2.4 Sets . 20
2.5 Sequences and series . 22
2.6 Calculus . 22

2.6.1 Derivatives . 22
2.6.2 Partial derivatives . 23
2.6.3 Integrals . 23

2.7 Algebra . 24
2.7.1 Fields . 24
2.7.2 Groups . 24
2.7.3 Linear algebra . 25

2.8 Operators . 29
2.8.1 Binary operators . 29
2.8.2 Unary operators . 30

∗This file has version 0.13 as of 1998/09/01.
†E-Mail at: cwynne@mts.jhu.edu, cwynne@jhu.edu .

1

2.9 Physics . 32
2.10 Probability . 33

3 Units 34
3.1 Package initialization . 34
3.2 Distance . 34
3.3 Electricity and magnetism . 34
3.4 Mass . 34
3.5 Thermodynamics . 34
3.6 Time . 34
3.7 Velocity . 35

Introduction

I have been a TEX user for quite a long time now. It was in my junior year in
college, in 1992, that one of my friends and one of my math professors decided to
warp my perception of reality and introduce me to Dr. Knuth’s wonderful creation.
In those days, Plain-TEX was the tool of choice, we coded everything ourselves
from primitives on up, logical markup was unknown, and LATEX was known as
Lame-TEX. During my senior year I wrote an honors thesis in mathematics which
required quite a lot of things not present in standard Plain-TEX. My macro files
grew, and grew, and. . .

In the year following my graduation, I converted myself to LATEX, mostly
because of the convergence my own personal modified ePlain/NFSS1/Plain format
was having towards LATEX in terms of logical markup. Most of macros were easily
converted into LATEX-ese. They got more complicated from there.

So now I regularly write up papers, letters, mathematical problem sets, and
just about anything else that uses the English language, in LATEX. The macros
have evolved quite a bit. More has been added. I took to using the dtx format for
most of my input files, and finally decided to wrap my big three up into a single
documented source file.

I hope that these macros will prove useful to somebody out there, and if
they do, feel free to buy me a beer next time you see me. I have other dtx files
available, including a modified letter class which also does German formal letters,
and a package for doing outlines. Any package of mine should be identifiable on
your friendly neighborhood CTAN site with a name like cjw*.(dtx|ins).

1 General macros

I tend to organize my package files as follows—first come flow control structures
for the package itself, usually in the form of new conditionals; then come the
options; then comes the meat of the package in some sort of vaguely thought out
order. This package is no exception.

2

1.1 Package initialization

Conditionals are usually used in conjunction with package options to provide con-
ditional inclusion of certain code, either via an \if. . . \endif block or using class
options. For this package, the subsystem in question is the inclusion of verbatim
typeset files.

1 \newif\if@verbext \@verbextfalse

Not surprisingly, this conditional is used directly by an option.

2 \DeclareOption{verbext}{\@verbexttrue}

I used to use options for the loading of additional packages. In particular, when I
used psfig.new which could not be handled as a LATEX 2ε package, I did this. Now
that I use the epsfig package that comes with LATEX 2ε, I simply issue a warning
to include the package separately.

3 \DeclareOption{psfig}{%
4 \PackageWarning{cjwmacro}%
5 {Obsolete option \CurrentOption. Use package ‘epsfig’ instead.}}

Since, however, using pstricks requires several files, I still use a package option to
take care of all of that. This option checks for the existence of both files before
including either, hence the nested calls to \InputIfFileExists. A similar option
is used for pst-plot.tex, since is not implemented as a package file.

6 \DeclareOption{pstricks}{%
7 \InputIfFileExists{pstricks.sty}{%
8 \InputIfFileExists{pst-node.tex}{}{%
9 \PackageError{cjwmacro}{File ‘pst-node.sty’ not found.}{}}}%

10 {\PackageError{cjwmacro}{File ‘pstricks.sty’ not found.}{}}}
11
12 \DeclareOption{psplot}{\InputIfFileExists{pst-plot.tex}{}{%
13 \PackageError{cjwmacro}{File ‘pst-plot.tex’ not found.}{}}}

The next two options are used to change behavior of some macros on draft as
opposed to final copies. Currently, only \ssbreak has such a dependency, and in
final form it uses the PS-Tricks package to typeset a nice section delimiter. Note
the use of \ExecuteOption by the final option to make sure that PS-Tricks is,
indeed, available.

14 % What to do for draft vs. final copy.
15 \DeclareOption{draft}{%
16 \def\ssbreakbar{\hbox to 2in{\hrulefill}}}
17 \DeclareOption{final}{%
18 \ExecuteOptions{pstricks}
19 \def\ssbreakbar{%
20 \psset{linewidth=0.4pt,unit=1in}%
21 \pspicture(-2.5,-0.15)(2.5,0.15)%
22 \qdisk(0,0){0.04}%
23 \qdisk(0.33,0){0.02}%
24 \qdisk(-0.33,0){0.02}%
25 \pspolygon*(0.33,-0.02)(0.33,0.02)(1.75,0)%
26 \pspolygon*(-0.33,-0.02)(-0.33,0.02)(-1.75,0)%
27 \endpspicture}}

3

To finish off option handling, we declare a default (warn about unknown
options), execute defaults, and process the passed option list.
28 \DeclareOption*{%
29 \PackageWarning{cjwmacro}{Unknown option ‘\CurrentOption’}}
30 \ExecuteOptions{draft}
31 \ProcessOptions

1.2 General definitions

These general definitions set up some ‘meta-macros’, to be used by other com-
mands.

One of the things I liked a lot about TEX was the use of \let to make aliases
for existing commands without sacrificing much of the control sequence space. In
the spirit of LATEX 2ε, however, I have implemented this thrice with name checking.
Analogously to the \newcommand-like macros, we offer the following three:
32 \newcommand{\alias} [2]{\@ifdefinable #1{\let #1 #2}}
33 \alias\realias\let
34 \newcommand{\providealias}[2]{\@ifundefined #1{\let #1 #2}}

Usage is, for example,

\alias\foo\bar

which makes \foo an alias for \bar. As expected, \alias only works if the new
name is currently undefined and \providealias does nothing if its first argu-
ment is already defined. Somewhat more lax than its counterpart \renewcommand,
\realias does not care if its first argument is defined or not. In essence, that
command is used to unconditionally alias a command. This is why, oddly enough,
\realias is itself just an alias of \let. Is this getting confusing yet?

Next we input wholesale a few useful packages. These are still in the spirit
of meta-macros which define this section. The first package, amstext, provides the
\text command, which basically puts its argument in text mode inside a box, but
in the current style (textstyle, scriptstyle, etc.). This is used later on. The xspace
package is used for control sequences which would encounter ‘the space problem’
when expanded as is.
35 \RequirePackage{amstext}
36 \RequirePackage{xspace}

The command \intertext from the amsmath package is quite useful, but I do not
want to include that entire package unless it is necessary. Therefore, I make sure
that command is defined one way or another. I also give it the alias \rem since I
am somewhat nostalgic about ancient forms of BASIC. . .
37 \providecommand{\intertext}[1]{\noalign{%
38 \penalty\postdisplaypenalty\addvspace{ 0.5\belowdisplayskip}
39 \vbox{\normalbaselines\noindent#1}%
40 \penalty\predisplaypenalty\addvspace{0.5\abovedisplayskip}}}
41 \alias\rem\intertext

Next we define some font style names which will be used in some contexts
later. This is done to avoid hard-coding of certain styles and to allow as much
customization as possible.

4

42 \providecommand{\pagenofont} {\normalfont}
43 \providecommand{\declarefont} {\normalfont\bfseries\mathversion{bold}}
44 \providecommand{\altdeclarefont}{\normalfont\itshape}
45 \providecommand{\captionfont} {\normalfont\itshape}
46 \providecommand{\examplefont} {\normalfont}
47 \providecommand{\altexamplefont}{\normalfont\itshape}
48 \providecommand{\labelfont} {\normalfont\bfseries\mathversion{bold}}
49 \providecommand{\timelinefont} {\normalfont}
50 \providecommand{\titlefont} {\normalfont\bfseries\Large\mathversion{bold}}
51 \providecommand{\verbatimfont} {\normalfont\ttfamily}

The next few commands are for programming convenience. First we want to
be able to swap the definitions of two control sequences.

52 \newcommand{\swapdef}[2]{{%
53 \let \@tempa #1\relax
54 \global\let #1 #2\relax
55 \global\let #2 \@tempa}}

We also want to be able to do the same for lengths (or glue or whathaveyou).

56 \newcommand{\swapdim}[2]{{%
57 \@tempdima #1\relax
58 \global #1 #2\relax
59 \global #2 \@tempdima}}

Next is a macro constructed from an exercise in The TEXbook, which takes three
control sequences and expands them in reverse order.

60 \newcommand{\expandthree}[2]{%
61 \expandafter\expandafter\expandafter #1\expandafter #2}

This next macro is modified from code I received in the comp.text.tex news-
group. According to the e-mail in which I received it, the original source is a set
of macros for TUGboat. It turns a number into an ordinal, finding the correct
ordinal label which is set as a superscript.

62 \newcommand{\nth}[1]{{%
63 \@tempcnta = #1\relax
64 \ifnum \@tempcnta < 0\relax % Make sure our number is
65 \@tempcnta = -\@tempcnta % non-negative.
66 \fi
67 \ifnum \@tempcnta < 14\relax % Deal first with the
68 \ifnum \@tempcnta > 10\relax % exceptions for
69 \def\@tempa{th} % 11, 12, and 13.
70 \fi
71 \else
72 \loop \ifnum\@tempcnta > 9\relax % Loop until the recursive
73 \@tempcntb = \@tempcnta % remainder (mod 10) is
74 \divide \@tempcntb by 10\relax % a single digit in order
75 \multiply\@tempcntb by 10\relax % to successfully satisfy
76 \advance \@tempcnta by -\@tempcntb% the ordinality test.
77 \repeat
78 \def\@tempa{\ifcase\@tempcnta % Figure the proper label:
79 th% % 0th
80 \or st% % 1st
81 \or nd% % 2nd
82 \or rd% % 3rd

5

83 \else th% % nth
84 \fi}
85 \fi
86 #1\ensuremath{^{\text{\@tempa}}}}} % Superscript the label in
87 % math mode.

Continuing in the vein of superscripts, we define two macros which put their
arguments as sub- and superscripts in script-script style. This was motivated by
such things as derivative indices which look just plain ugly in script style.

88 \alias\sst\scriptscriptstyle
89 \newcommand{\ssp}[1]{^{\sst#1}}
90 \newcommand{\ssb}[1]{_{\sst#1}}

We now come to some very important and necessary macros, namely the
creation of typeset sideways ASCII smiley faces. :-) Since I like to be as general
as possible, I have also written an \emote macro for indicating emotions. 〈smirk〉
91 \newcommand{\smiley}[1][\@smiley]{%
92 \edef\@sf{\spacefactor=\the\spacefactor}%
93 \unskip\spacefactor=1000\relax\space #1\@sf\xspace}
94 \newcommand{\@smiley}{%
95 {\ttfamily\raise 0.078em\hbox{:}\kern-0.1em{-}\kern-0.1em{)}}}
96 \newcommand{\emote}[1]{%
97 \smiley[\ensuremath{\langle}\emph{#1}\ensuremath{\rangle}]}

Since I learned the good habit of doing so at Washington and Lee, I often
append pledges to my assignments. The generic pledge is implemented as an
environment. It formerly took an argument, the date, but I decided that was
superfluous, seeing as how the assignment headers set the date once. Why risk
inconsistency? Much to my surprise, I found out that LATEX 2ε’s \maketitle
command unsets not only the date holder, but also the command which is used to
set the date in the first place. Anyhow, this means that the date does need to be
set, but I have left that to be done by the headers. The pledge environment issues
a warning if the date is not set.

98 \newenvironment{pledge}%
99 {\ifx\@empty\@date

100 \PackageWarning{cjwmacro}{Date is not set.}
101 \fi
102 \parskip=2pt \parindent=0pt\relax
103 \null\vfill\begin{flushright}
104 \itshape\small}
105 {\\[5ex]\normalfont\footnotesize
106 \makebox[2in]{\hrulefill}\quad\@date\\
107 \makebox[2in]{Colin J.~Wynne}\quad{\hphantom{\@date}}\\
108 \end{flushright}}

The old Washington and Lee pledge lives on in my macros. . . It requires one
argument, namely the type of assignment being pledged. The argument is optional,
though, and a paper is assumed by default.

109 \newcommand{\wnlpledge}[1][paper]{%
110 \ifx\@empty\@date
111 \PackageWarning{cjwmacro}{Date is not set.}
112 \fi
113 \parskip=2pt \parindent=0pt\relax

6

114 \null\vfill\begin{flushright}
115 \itshape\small
116 On my honour, I have neither given nor received\\
117 any unacknowledged aid on this #1.\\[5ex]
118 \normalfont\footnotesize
119 \makebox[2in]{\hrulefill}\quad\@date\\
120 \makebox[2in]{Colin J.~Wynne,~’94}\quad{\hphantom{\@date}}\\
121 \end{flushright}}

As mentioned in the option section, there is a macro used to put fancy section
delimiters into, say, a story. The \ssbreak command expects the type of delimiter,
the \ssbreakbar, to be defined. Since either draft or final must be chosen as an
option, this should be fine, but I have put a hopefully redundant command in just
in case.

122 \newcommand{\ssbreak}{\bigskip
123 \centerline{\ssbreakbar}\bigbreak}
124 \providecommand{\ssbreakbar}{}

1.3 Box formatting

I have written some of my own commands for handling boxes. The first thing I
wanted was an analog of \mbox or \hbox for math mode. The simple version—
\mathbox puts its argument into an \hbox, in math mode, in the current style.
The second version is \Mathbox, which takes two arguments, the first of which is
put in the box and evaluated before math mode is entered. This was done for a
specific application where I needed to get the contents of the \mathbox itself into
boldface. Of course, \boldmath cannot be evaluated within math mode. Note that
the style is chosen by the \mathpalette macro, and that the command \@mathbox
is essentially just a dummy to allow the proper expansion of \mathpalette.

125 % \mathbox puts its argument into an \hbox, in math mode, with the
126 % current \...style.
127 \def\mathbox #1{\hbox{$\mathpalette\@mathbox{#1}$}}
128 \def\Mathbox #1#2{\hbox{#1$\mathpalette\@mathbox{#2}$}}
129 \def\@mathbox#1#2{#1#2}

Now, there is a reason why these are defined with \def and not \newcommand.
You see, what I really wanted to do was something like

\newcommand{\mathbox}[2][]{%
\hbox{#1$\mathpalette\@mathbox{#1}$}}

\newcommand{\@mathbox}[2]{#1#2}

in order to get optional arguments to my \mathboxes. The problem, though, is
that I want to use this command in the context of \boxN=\mathbox{. . . }, and
for that to work, the first token in the expansion of \mathbox must be a \?box
command. The overhead imposed by \newcommand precludes this. So, I use the
cheap hack until I figure out a more workable way of implementing what I really
want.

A more generically applicable box command is one which does unto width
what \smash does to height. Hence \smush:

7

130 \newcommand{\smush}{\relax
131 \ifmmode
132 \def\next{\mathpalette\math@smush}
133 \else
134 \let\next\make@smush
135 \fi \next}
136 \newcommand{\make@smush}[1]{\setbox0=\hbox{#1}\fin@smush}
137 \newcommand{\math@smush}[2]{\setbox0=\hbox{$\m@th#1{#2}$}\fin@smush}
138 \newcommand{\fin@smush}{\wd0=0pt \box0 }

And finally, vaguely in the realm of boxes, we have struts. Here I have defined
some math struts of various sizes (corresponding to the various delimiter sizes on
which they are based).

139 \newcommand{\bigmathstrut} {\vphantom{\big()}}
140 \newcommand{\biggmathstrut}{\vphantom{\bigg()}}
141 \newcommand{\Bigmathstrut} {\vphantom{\Big()}}
142 \newcommand{\Biggmathstrut}{\vphantom{\Bigg()}}

1.4 Abbreviations, etc.

I have found myself using particular types of abbreviations quite often—often
enough that I wanted control sequences for them, whence these first few specimens.

143 \newcommand{\ie} {\emph{i.e.}\xspace}
144 \newcommand{\eg} {\emph{e.g.}\xspace}
145 \newcommand{\heisst}{d.h\null.\xspace} % \dh is taken.

Note the use of \xspace so that explicit space need not be given afterward. I did
this mostly because I have never decided whether or not I want to use a comma
after either of this.

The second type of abbreviation is the initial, or should I say initials. I finally
settled on a style I like—two initials should be separated by a thinspace, and will
of course need to have the spacefactor adjusted if at the end of a sentence (followed
by a period, in particular). Here is the implementation:

146 \newcommand{\initials}[2]{%
147 \break@init #2
148 \@ifdefinable #1{%
149 \global\edef#1{%
150 \noexpand\hbox{\@tempa.\noexpand\,\@tempb}%
151 \noexpand\@ifnextchar.{\noexpand\@}{.\noexpand\xspace}}}}
152 \def\break@init #1.#2.{%
153 \def\@tempa{#1}\def\@tempb{#2}}

What happens is this. The \initials command is given a control sequence name
and the initials to be used. The initials are broken on the periods and returned in
the specified tokens. Then, if the control sequence is available for definition, it is
defined in such a way to make all the spacing and punctuation work out. Since the
tokens need to be expanded back to the separate initials, an \edef is required—at
the same time, use of \noexpand is made to keep things from going kablooie at
definition time. Here are some standard initials by way of usage example.

154 \initials{\UN}{U.N.}
155 \initials{\US}{U.S.}
156 \initials{\AI}{A.I.}

8

1.5 Dates

I have had call to do a fair amount of TEX in both English and German. Therefore,
in implementing the examples of date macros from The TEXbook, I have provided
for both languages.

157 % LaTeX style commands for date-parts, both English and German.
158 \providecommand{\theday}{\number\day\relax}
159 \providecommand{\themonth}{%
160 \ifcase\month\or January\or February\or%
161 March\or April\or May\or June\or July\or August\or%
162 September\or October\or November\or December\fi}
163 \providecommand{\themonat}{%
164 \ifcase\month\or Januar\or Februar\or%
165 M\"arz\or April\or Mai\or Juni\or Juli\or August\or%
166 September\or Oktober\or November\or Dezember\fi}
167 \providecommand{\theyear}{\number\year\relax}

Note that \today is unconditionally defined by the following underhandedness.

168 \providecommand{\today}{}
169 \renewcommand{\today}{\theday~\themonth, \theyear\xspace}
170 \providecommand{\heute}{}
171 \renewcommand{\heute}{den~\theday.\ \themonat\ \theyear\xspace}
172 \alias\gdate\heute

1.6 Page styles and titles

We are finally into the realm of more traditional package macros, namely creating
some general page appearances. Here I have redefined the plain pagestyle to take
advantage of the \pagenofont defined above.

173 \renewcommand{\ps@plain}{%
174 \let\@mkboth \@gobbletwo
175 \let\@oddhead \@empty
176 \let\@evenhead\@empty
177 \def\@oddfoot{\pagenofont\hfil\thepage\hfil}
178 \let\@evenfoot\@oddfoot}

The topright pagestyle has page numbers (strangely enough) at the top right of
the page.

179 \newcommand{\ps@topright}{%
180 \let\@mkboth \@gobbletwo
181 \def\@oddhead{\pagenofont\hfil\thepage}
182 \let\@evenhead\@oddhead
183 \let\@oddfoot \@empty
184 \let\@evenfoot\@empty}

1.7 Text formatting

1.7.1 Timelines

A timeline is a long, running, two-column format used, for example, to do résumés
or vitæ(or, if you are in Germany, a Lebenslauf). The idea is that a date (or

9

some identifying information) appears at the left, and the content is given in the
righthand column. The usage is

\timeline[〈pos〉]{〈date〉}
where 〈pos〉 is exactly the argument to \makebox, the justification of the 〈date〉
entry within the lefthand column. That column has length \timelineskip, which
can off course be set as desired.

185 \newlength{\timelineskip}
186 \setlength{\timelineskip}{1.75in}

The actual entries are not considered to be two separate columns. Rather, the
first line is padded out to \timelineskip with makebox, and following lines use
a hanging indentation. The control sequence \endtimeline is defined trivially so
that a timeline entry may be used as a timeline environment.

187 \newcommand{\timeline}[2][l]{%
188 \noindent\hangindent=\timelineskip
189 \makebox[\timelineskip][#1]{\timelinefont{#2}}\ignorespaces}
190 \let\endtimeline\relax

1.7.2 Mathematical declarations

In writing up mathematics, one often wishes to declare definitions, theorems, and
so forth. I have written generic declaration macros which can be customized for
these uses. Since I prefer to have all such things numbered seuqentially, they use a
common counter, called \declare, strangely enough. They are numbered within
sections if sections are being numbered.

191 \@ifundefined{c@section}
192 {\newcounter{declare}}
193 {\newcounter{declare}[section]
194 \renewcommand{\thedeclare}{\thesection.\arabic{declare}}}

When declarations are numbered, it is sometime nice to have the declaration
type and number appear uniformly wide throughout. This is done by forcing the
declaration to appear in a box of width \declareindent.

195 \newlength{\declareindent}
196 \setlength{\declareindent}{0pt}

We use some internal commands to specify exactly how the declaration is typeset.
In fact, we will be defining not only declaration, but an alternate declaration form
so that two different methods may be used simultaneously in a document—e.g.,
when theorems and major results are to be italicized, but definitions and so forth
are not.

197 \newcommand{\@declare} [1]{{\declarefont#1:}\quad}
198 \newcommand{\@altdeclare}[1]{{\altdeclarefont#1:}\quad}

The generic declarations are environments, and are provided in both numbered
(normal) and unnumbered (starred) forms. The latter are more simple.

199 \newenvironment{declaration*}[1]%
200 {\medbreak\noindent\ignorespaces
201 \@declare{#1}\ignorespaces}%
202 {\kern0pt\nobreak\smallskip}

10

203 \newenvironment{altdeclaration*}[1]%
204 {\medbreak\noindent\ignorespaces
205 \@altdeclare{#1}\ignorespaces}%
206 {\kern0pt\nobreak\smallskip}

The numbered versions introduce nothing surprising, but are a tad more involved.

207 \newenvironment{declaration}[1]%
208 {\medbreak\refstepcounter{declare}
209 \noindent\ignorespaces
210 \ifnum\declareindent = 0\relax%
211 \@declare{\thedeclare\quad #1}
212 \else
213 \makebox[\declareindent]{\@declare{\thedeclare\hss #1}}
214 \fi\ignorespaces}
215 {\kern0pt\nobreak\smallskip}
216 \newenvironment{altdeclaration}[1]%
217 {\medbreak\noindent\ignorespaces
218 \refstepcounter{declare}
219 \ifnum\declareindent = 0\relax
220 \@altdeclare{\thedeclare\quad #1}
221 \else
222 \makebox[\declareindent]{\@altdeclare{\thedeclare\hss #1}}
223 \fi\ignorespaces}
224 {\kern0pt\nobreak\smallskip}

Now, because I am essentially lazy and do not want the extra typing needed
for an environment, I have shortcuts, \declare and \altdeclare, as well as
numbered versions \ndeclare and \altndeclare. The first argument is passed
to the corresponding environment, and the following paragraph is the body of the
environment.

225 \def\declare #1#2\par{%
226 \begin{declaration*}{#1}#2\end{declaration*}\par}
227 \def\altdeclare #1#2\par{%
228 \begin{altdeclaration*}{#1}#2\end{altdeclaration*}\par}
229 \def\ndeclare #1#2\par{%
230 \begin{declaration}{#1}#2\end{declaration}\par}
231 \def\altndeclare#1#2\par{%
232 \begin{altdeclaration}{#1}#2\end{altdeclaration}\par}

Genreality is all well and good, but there are some stock declarations, given here
in both numbered and unnumbered versions.

233 \providecommand{\corollary} {\declare{Corollary}}
234 \providecommand{\definition} {\declare{Definition}}
235 \providecommand{\lemma} {\declare{Lemma}}
236 \providecommand{\proposition} {\declare{Proposition}}
237 \providecommand{\theorem} {\declare{Theorem}}
238 \providecommand{\note} {\altdeclare{Note}}
239
240 \providecommand{\ncorollary} {\ndeclare{Corollary}}
241 \providecommand{\ndefinition} {\ndeclare{Definition}}
242 \providecommand{\nlemma} {\ndeclare{Lemma}}
243 \providecommand{\nproposition}{\ndeclare{Proposition}}
244 \providecommand{\ntheorem} {\ndeclare{Theorem}}
245 \providecommand{\nnote} {\altndeclare{Note}}

11

In addition, the following German declaration (meaning a claim) is also defined.
246 \providecommand{\behaupt} {\declare{Behauptung}}
247 \providecommand{\nbehaupt} {\ndeclare{Behauptung}}

Finally, since one is not likely to mix numbered and unnumbered, here is a control
sequence that will make sure everything is numbered.

248 \newcommand{\allndeclares}{%
249 \let\declare \ndeclare
250 \let\altdeclare \altndeclare}

Now that we have propositions, claims, and theorems (oh my!), we want to be
able to prove them. The first step is to define a proof environment. The environ-
ment simply sets up a label and some spacing. The label is in \altdeclarefont.
The label is an optional argument which defaults to ‘Proof’, oddly enough.

251 \newenvironment{proof}[1][Proof]%
252 {\smallbreak\noindent{\altdeclarefont#1:}%
253 \quad\ignorespaces}%
254 {\qed}

Just in case you are prooving in German, we also have the following:
255 \newenvironment{beweis}[1][Beweis]%
256 {\smallbreak\noindent{\altdeclarefont#1:}%
257 \quad\ignorespaces}%
258 {\qed}

Note that the end of a proof has the command \qed, which we will unconditionally
define here. This is adapted from The TEXbook. The idea is to right justify
\qedsymbol on the line where \qed is invoked, unless there is not a comfortable
amount of room. That amount is given as 2 em. When this happens, the line is
broken and the \qedsymbol appears flush right on the following line.

259 \providecommand{\qed}{}
260 \renewcommand{\qed}{%
261 {\unskip\nobreak\hfil\penalty 50%
262 \hskip 2em\hbox{}\nobreak\hfil\qedsymbol%
263 \parfillskip=0pt \finalhyphendemerits=0 \par}}

The standard end-of-proof symbol is a box, but I prefer somewhat less ink. I use
TEX’s hollow diamond suit symbol (again unconditionally defined).

264 \providecommand{\qedsymbol}{}
265 \renewcommand{\qedsymbol}{\lower 0.35ex\hbox{\diamondsuit}}

In case it is desired, the box symbol is defined as \qedbox, and then with a simple
alias this can be used to end all proofs.

266 \newcommand{\qedbox}{\vrule height4pt width3pt depth2pt}

Now we wish to define control sequences for some constructions commonly found
in proofs. I often find myself writing out proofs which require cases. There are
two types of cases. Often I will want to have two cases, one for each definition
of an equivalence for example. In this case, the case delimiters will be something
like \then and \when commands, and should be set in parentheses to mark them
clearly. The other type is the more general ‘Case n:’ (where n, one hopes, will
not be too large). To cover both of these, we use a fairly typical LATEX conceit:

\Case*{〈case〉}

12

where the unstarred argument sets 〈case〉 inside parentheses and the star supresses
the parentheses. A German alias is given.

267 \newcommand{\Case}{\@ifstar{\@starCase}{\@Case}}
268 \newcommand{\@starCase}[1]{\@@Case{#1}}
269 \newcommand{\@Case}[1]{\@@Case{(#1)}}
270 \newcommand{\@@Case}[1]{%
271 \noindent{\declarefont#1}\quad\ignorespaces}
272 \alias\Fall\Case

And finally, just in case the proof is by contradiction, we have the following.

273 \newcommand{\contra}{\ensuremath{\Rightarrow\Leftarrow}}

1.7.3 Problems and examples

In addition to declarations, and for subjects other than mathematics, one might
want to provide examples and worked problems. I implement examples as a sepa-
rate environment (well, four separate environments) so that they may have fonts
distinct from declarations.

274 \newenvironment{example*}%
275 {\@nameuse{declaration*}{Example}\examplefont}
276 {\medbreak}
277 \newenvironment{altexample*}%
278 {\@nameuse{declaration*}{Example}\examplefont}
279 {\medbreak}
280 \newenvironment{example}%
281 {\declaration{Example}\examplefont}
282 {\medbreak}
283 \newenvironment{altexample}%
284 {\declaration{Example}\examplefont}
285 {\medbreak}

Problems are handled differently. In my experience, problems do not appear in
longwinded documents using sectioning, and so the counter need not be embedded.

286 \newcounter{problem}
287 \setcounter{problem}{0}
288 \renewcommand{\theproblem}{\arabic{problem}}
289 \renewcommand{\p@problem}{}

Often when working a problem, one wishes to include a reference to the source.
This is accomplished via the \Page macro. Usage is

\Page*[〈author〉]{〈pp〉}{〈problem〉}

In the LATEX tradition, the standard command tries to outguess you by prepending
a hash ‘#’ to the problem number, whereas the starred version omits this. Thus,
the standard version produces

([〈author〉,]p. 〈pp〉, #〈problem〉)

and \Page* leaves off the hash. Notice that the space between author and page
number is inserted by the macro. The macro is defined robustly so that it can be
used in moving arguments.

13

290 \DeclareRobustCommand{\Page}{%
291 \@ifstar{\@Page{}}{\@Page{\#}}}
292 \def\@Page#1{%
293 \@ifnextchar [{\@@Page{#1}}{\@@Page{#1}[]}}
294 \def\@@Page#1[#2]#3#4{%
295 \def\@tempa{#2}%
296 \ifx\@empty\@tempa%
297 \let\@tempb\@tempa%
298 \else%
299 \edef\@tempb{\@tempa,~}%
300 \fi%
301 (\@tempb p.\,#3, #1{#4})}

The statement of a problem is given in an environment, again so that font cus-
tomization can be easily done. The statement environment takes a single optional
argument, which is typeset at the beginning of the statement in \altdeclarefont.
The rest of the statement is in \declarefont. I use the optional argument to
pass a \Page reference most often—note, though, that if the optional argument
to \Page is used, the whole \Page command should be put in braces sp that the
square brackets of optional arguments do not get confused.

302 \newenvironment{statement}[1][\null]%
303 {\def\@tempa{#1}\def\@tempb{\null}%
304 \ifx\@tempa\@tempb%
305 \def\@tempc{\null}%
306 \else%
307 \def\@tempc{\altdeclarefont\@tempa\quad}%
308 \fi%
309 \declarefont{\@tempc}\ignorespaces}
310 {\removelastskip\nopagebreak\smallskip}

A problem, now, is basically just a wrapper for the statement. It generates and sets
the problem number, does some spacing, and the body of the problem environment
becomes the body of the statement. In essence, a problem is a numbered statement.
There is a starred version which does not do numbers and references—this just
does the correct spacing and calls statement. Note that the problem number is set
using a macro from the cjw-outl package.

311 \newenvironment{problem}%
312 {\setcounter{equation}{0}%
313 \gdef\theequation{\theproblem.\arabic{equation}}%
314 \removelastskip\medbreak%
315 \refstepcounter{problem}%
316 \noindent\theoutlabel{\theproblem.}%
317 \statement}
318 {\endstatement}
319 \newenvironment{problem*}%
320 {\removelastskip\medbreak%
321 \noindent\statement}
322 {\endstatement}

Since I have been known to write assignments in German, we provide the aliases
to make an aufgabe environment.

323 \alias \aufgabe \problem
324 \realias\endaufgabe\endproblem

14

For parts and subparts of problems, the aliases are English and the main definitions
are German because I wrote these while I was in Germany. So, parts (Teile) are
numbered within problems and subparts (Subteile) within parts. The defaults for
cross-referencing (the \p@ forms) are set, too.

325 \newcounter{teil} [problem]
326 \newcounter{steil}[teil]
327 \renewcommand{\theteil} {(\alph{teil})}
328 \renewcommand{\p@teil} {\theproblem}
329 \renewcommand{\thesteil} {(\roman{steil})}
330 \renewcommand{\p@steil}{\p@teil\theteil}

The environment part/teil used to be implemented entirely in terms of the cjw-
outl package, but that was a little bit of overkill, and made the numbering more
difficult to implement. I ought to one day implement problems/parts/subparts
entirely in terms of the outline macros. We’ll see.

Anyway, the current implementations still rely on some of the definitions from
the cjw-outl package. The part/teil environments take a single optional argument,
namely the outline depth. Level one starts the text flush left at the margin, which
is usually where the problem is, hence a part should be at level two, and this is
the default. A more detailed explanation of the goings-on here can be found in
cjw-outl.dtx.

331 \newenvironment{teil}[1][2]%
332 {\@tempcnta=#1\advance\@tempcnta by -1\relax
333 \ifnum\@tempcnta < 1\relax
334 \leftskip=0pt\relax
335 \else
336 \leftskip=\@tempcnta\outlindent
337 \fi
338 \refstepcounter{teil}
339 \addvspace{\medskipamount}%
340 \noindent\theoutlabel{\theteil}%
341 \ignorespaces}
342 {\par\smallbreak}

The default level for ppart or steil, the subpart environments, is three.
343 \newenvironment{steil}[1][3]%
344 {\@tempcnta=#1\advance\@tempcnta by -1\relax
345 \ifnum\@tempcnta < 1\relax
346 \leftskip=0pt\relax
347 \else
348 \leftskip=\@tempcnta\outlindent
349 \fi
350 \refstepcounter{steil}
351 \addvspace{\medskipamount}%
352 \noindent\theoutlabel{\thesteil}%
353 \ignorespaces}
354 {\par\smallbreak}

English aliases are, of course, given.
355 \realias\part \teil
356 \realias\endpart \endteil
357 \alias \ppart \steil
358 \realias\endppart\endsteil

15

1.7.4 Footnotes

This is a simple modification to a standard LATEX 2ε internal macro, because I
prefer hanging indentation on my footnote text.

359 \long\def\@makefntext#1{%
360 \parindent 1em\noindent\hangindent=\parindent%
361 \hb@xt@ 1em{\hss \llap{\@makefnmark} }#1}

1.7.5 Text displays

I have turned the \begindisplay and \enddisplay macro pair from The TEXbook
(page 421) into a LATEX environment. As with Knuth’s macros, local definitions
for use within the display can be given, in this case via the display’s optional
argument. Since the environment is implemented through the standard tabular
environment, there is a mandatory argument specifying column layout. Overall,
usage is

\begin{display}[〈local〉]{〈cols〉}

with local definitions 〈local〉 and column descriptol 〈col〉. (By the way, the previous
display was created with the display environment. . .)

The display’s offset from the left margin is specified by \textdisplay indent.
Default value is equal to \parindent, and is therefore set below, after \parindent.

362 \newlength{\textdisplayindent}

The actual display environment uses the spacing and penalties of mathematical
displays.

363 \newenvironment{display}[2][]
364 {\vadjust{\penalty\predisplaypenalty}
365 \@newline[\abovedisplayskip]%
366 \begingroup%
367 #1%
368 \begin{tabular}{@{\null\hspace{\textdisplayindent}\null}#2}}
369 {\end{tabular}\endgroup
370 \vadjust{\penalty\postdisplaypenalty}
371 \@newline[\belowdisplayskip]\ignorespaces}

1.8 Verbatim inclusions

Since I only occassionally need to include verbatim files, the following macros need
to be specifically included by a package option, as was mentioned above.

372 \if@verbext

For numbered inclusions, we need a line number counter.

373 \newcounter{vfline}
374 \renewcommand{\thevfline}{\arabic{vfline}}

We need the following command from The TEXbook.

375 \providecommand{\uncatcodespecials}{%
376 \def\do##1{\catcode‘##1=12 }\dospecials}

16

The basic command is \verbfile which takes an optional argument specifying
the starting line number (default is one), and a mandatory argument which is, of
course, the name of the file to include. There is also \verbfilenolines which
does not number lines, and needs only the one mandatory argument.

377 \providecommand{\verbfile}[2][1]{%
378 \par\begingroup\@vf@lines{#1}\input{#2}\relax\endgroup}
379 \providecommand{\verbfilenolines}[1]{%
380 \par\begingroup\@vf@nolines\input{#1}\relax\endgroup}

In the manner of command which need to do \catcode trickery, the above are
primarily wrappers for the real commands. The one problem with these as cur-
rently implemented is that they do not handle leading space in the included file.
Oh, well.

381 \newcommand{\@vf@lines}[1]{%
382 \verbatimfont
383 \setcounter{vfline}{#1}
384 \addtocounter{vfline}{-1}
385 \setlength{\parindent}{0pt}
386 \setlength{\parskip}{0pt}
387 \def\par{\leavevmode\endgraf}
388 \obeylines \uncatcodespecials \obeyspaces
389 \everypar{\null\stepcounter{vfline}%
390 \llap{\scriptsize\thevfline\quad}\null}}
391 \newcommand{\@vf@nolines}{%
392 \verbatimfont
393 \setlength{\parindent}{0pt}
394 \setlength{\parskip}{0pt}
395 \def\par{\leavevmode\endgraf}
396 \obeylines \uncatcodespecials \obeyspaces
397 \everypar{\null}}

Now we end the inclusion conditional.

398 \fi

1.9 Initialization

We use the \AtBeginDocument command to set up some default values when the
document is actually started.

399 \AtBeginDocument{%
400 \setlength{\parindent} {20pt}
401 \setlength{\parskip} { 2pt plus 1pt}
402 \setlength{\textdisplayindent}{\parindent}}

2 Math macros

While some macros useful for typesetting mathematics have already been cov-
ered, none of them had to do with mathematical equations or symbols—they were
macros for logical flow and delineation. In this package, cjwmath, I have written
macros which are specifically for typesetting the actual math—the vast majority
of these macros, if not actually all of them, are meant to be used in math mode.

17

2.1 Package initialization

Since different papers require different types of math, I have again used the in-
troduction of conditionals and package options to control what code is actually
loaded. The important one concerns use of the AMS math packages in AMS-LATEX.
This is included as an option to my package because some of my definitions de-
pend upon whether the AMS macros are being used. There are conditionals for
including code for calculus (both derivatives and integrals) and some code for
physics.

403 \newif \if@amsmath
404 \newif \if@derivatives
405 \newif \if@integrals
406 \newif \if@physics

There are options corresponding to each conditional.

407 \DeclareOption{amsmath} {\@amsmathtrue}
408 \DeclareOption{derivs} {\@derivativestrue}
409 \DeclareOption{integrals}{\@integralstrue}
410 \DeclareOption{physics} {\@physicstrue}

There used to be another option for typesetting units. While I originally included
that code in this package directly, I found several occasions where I wanted units
but not the rest of the math code. Therefore, units are in a separate package, and
the option now just reminds the user to input that package by itself.

411 \DeclareOption{units}{%
412 \PackageWarning{cjwmath}%
413 {Obsolete option \CurrentOption. Use package ‘cjwunits’ instead.}}

Finally, there is a default option, to warn about unknown options, and the passed
option list is processed.

414 \DeclareOption*{%
415 \PackageWarning{cjwmath}{Unknown option ‘\CurrentOption’}}
416 \ProcessOptions

This package depends upon the previous one.

417 \RequirePackage{cjwmacro}

It also uses the AMS fonts, for which we require amssymb, which itself requires
amsfonts.

418 \RequirePackage{amssymb}

Just in case things get screwy in cjwmacro—which they shouldn’t, we explicitly
require amstext here, too, for the \text command.

419 \RequirePackage{amstext}

I much prefer the following package to AMS’s own blackboard bold font.

420 \RequirePackage{bbm}

If the amsmath option is specified, we load the package (which itself brings in a
lot of other stuff).

421 \if@amsmath
422 \RequirePackage{amsmath}
423 \fi

18

2.2 Miscellaneous macros

Here is a package command which I have written to cover the shortcomings of
AMS-LATEX’s \DeclareNewMathOperator command. In particular, I would like
to be able to set different fonts for some operators. The syntax is

\NewMathOp*[〈font〉]{\cs}{〈text〉}

The optional star makes an operator with limits. The 〈font〉 is, by default,
\operator@font. \cs is the name of the new mathop. 〈text〉 should be the
printed version of the operator, but may also include, for example, extra kerning
information, as in

\NewMathOp[\mathfrak]{\so}{o\kern 0pt}

The command should produce something robust.

424 \DeclareRobustCommand{\NewMathOp}{%
425 \@ifstar{\@makenewop{\displaylimits}}
426 {\@makenewop{\nolimits}}}

The first iteration applies a font if the optional argument is not given.

427 \def\@makenewop#1{%
428 \@ifnextchar [{\@@makenewop{#1}}
429 {\@@makenewop{#1}[\operator@font]}}

Finally, the net operator itself is declared robustly. The arguments are, in order,
either \displaylimits or \nolimits, the font, the control sequence, and the
operator text.

430 \def\@@makenewop#1[#2]#3#4{%
431 \DeclareRobustCommand{#3}{%
432 \mathop{\kern\z@{#2{#4}}}#1}}

The next few macros have to do with things not specific to any particular
flavor of mathematics. For example, I like some of the alternate Greek characters
more than the originals—notice how we cleverly required the cjwmacro package
which gives us the \swapdef command.

433 \swapdef{\epsilon}{\varepsilon}
434 % \swapdef{\theta}{\vartheta}
435 \swapdef{\rho}{\varrho}

I also like the empty set symbol from AMS, to which I also assign a German alias.

436 \swapdef{\nothing}{\varnothing}
437 \alias\leer\nothing

The standard symbols ‘∃’ and ‘∀’ do not have satisfactory spacing, in my opinion,
so I redefine them as relations. Notice the aliasing so that the symbols’ redefinition
can be carried out regardless of current math fonts.

438 \alias\@@exists\exists
439 \renewcommand{\exists}{\mathrel{\@@exists}}
440 \alias\@@forall\forall
441 \renewcommand{\forall}{\mathrel{\@@forall}}

19

What LATEX cleverly calls \ni (a backwards ‘∈’) really ought to mean ‘such that,’
hence I rename it:

442 \newcommand{\st}{\mathrel{\ni}}

Being essentially lazy, I also prefer to make a nice control sequence for some
standard abbreviations. One happens to be German (since in German it is more
acceptable to use abbreviations of long phrases even in a more formal setting).

443 \newcommand{\WLOG}{Without loss of generality\xspace}
444 \newcommand{\Wlog}{without loss of generality\xspace}
445 \newcommand{\obda}{o.B.d.A.\xspace}
446 \newcommand{\fp}{floating-point\xspace}

The following two commands are simply for phantoms I often find myself using, for
example to make alignments in arrays and matrices come out right. The mnemonic
is ‘phantom negative’ or ‘phantom equals’.

447 \newcommand{\pneg}{}
448 \newcommand{\peq}{}

Going probably too far into the realm of generalization, here are some macros to
set their arguments inside matching scaled delimiters of various sorts.

449 \newcommand{\anglebrackets}[1]{%
450 \left\langle #1 \right\rangle}
451 \newcommand{\curlybrackets}[1]{%
452 \left\{ #1 \right\}}
453 \newcommand{\squarebrackets}[1]{%
454 \left[#1 \right]}
455 \newcommand{\vertbrackets}[1]{%
456 \left| #1 \right|}
457 \newcommand{\Vertbrackets}[1]{%
458 \left\| #1 \right\|}

And now for something completely different—sometimes an operand should be
left generic, but not in terms of a variable. The usual way of accomplishing this
is to place a small dot where the argument would otherwise go. As I consider this
to imply ‘no argument’, the command is \noarg.

459 \newcommand{\noarg}{\,\cdot\,}

We end with a few things that should be fairly obvious.

460 \newcommand{\ee}[1]{\times10^{#1}}
461 \newcommand{\half}{\sfrac12}
462 \newcommand{\ninfty}{-\infty}

This is shorthand for function definitions, including an extra control sequence for
some backwards compatibility and an alias to German.

463 \newcommand{\fcn}[2]{\colon{#1}\rightarrow{#2}}
464 \newcommand{\mapping}[3]{{#1}\fkt{#2}{#3}}
465 \alias\fkt\fcn

Restrictions of functions:

466 \newcommand{\restr}[2][\big]{\kern -.1em #1|_{#2}}

20

2.3 Combinatorics

The binomial coefficient
(
n
k

)
is defined, depending on whether or not AMS-LATEX

is being used.

467 \if@amsmath
468 \realias\choose\binom
469 \else
470 \renewcommand{\choose}[2]{{{#1}\atopwithdelims(){#2}}}
471 \fi

And lastly, we have the combinatorial doohickie which is read as ‘n multichoose
k’, using doubled parentheses as delimiters. I think this comes out looking right.

472 \newcommand{\mchoose}[2]{%
473 \mathchoice%
474 {\left(\kern-0.48em\choose{#1}{#2}\kern-0.48em\right)}
475 {\left(\kern-0.30em
476 \choose{\smash{#1}}{\smash{#2}}\kern-0.30em\right)}
477 {\left(\kern-0.30em
478 \choose{\smash{#1}}{\smash{#2}}\kern-0.30em\right)}
479 {\left(\kern-0.30em
480 \choose{\smash{#1}}{\smash{#2}}\kern-0.30em\right)}
481 }

There is also the old-fashioned nCk-type notation, as used both in English and in
German.

482 \newcommand{\Comb}[2]{% % C
483 {}_{#1}{\operator@font C}_{#2}} % #1 #2
484 \newcommand{\Komb}[2]{% % #2
485 {\operator@font Ko}_{#1}^{#2}} % Ko
486 \newcommand{\Kombun}[2]{\Komb{#1,\neq}{#2}} % #1
487 \newcommand{\Perm}[2]{% % #2
488 {\operator@font Pe}_{#1}^{#2}} % Pe
489 \newcommand{\Permun}[2]{\Perm{#1,\neq}{#2}} % #1

2.4 Sets

The most important macro in this section is named, of course, \set. The idea is
to make sets which look like

{
x ∈ �2

∣∣ ‖x‖p = 1 ∀ p = 1, 2, 3, . . .
}
.

That is, there should be scaled braces around two halves separated by a scaled
logical delimiter, the vertical bar. The problem with this is getting everything the
same height, since the | specifier does not scale and there is no middle-counterpart
to \left. . . \right.

So, the command has the form:

\set[〈mid〉]{〈left〉}{〈right〉}

The optional 〈mid〉 specifies an alternate delimiter to use between the two defi-
nition halves of the set. If it is left empty, the null delimiter ‘.’ will be assumed.
If anything at all appears in the optional argument, though, the first token must

21

be a delimiter, as it will immediately be preceded by a sizing macro. For ex-
ample, if you wish to use a colon to separate the definitions, use ‘[.:]’ as the
optional argument. The mandatory 〈left〉 and 〈right〉 are simply the halves of the
set definition.

490 \newcommand{\set}[3][|]{{%
491 \newdimen\@tempdimd%

Each half is set in its own box, then the larger of the respective heights and depths
are determined.

492 \setbox0=\mathbox{#2}\@tempdima=\ht0 \@tempdimb=\dp0%
493 \setbox0=\mathbox{#3}\@tempdimc=\ht0 \@tempdimd=\dp0%
494 \ifdim\@tempdimc > \@tempdima
495 \@tempdima=\@tempdimc
496 \fi
497 \ifdim\@tempdimd > \@tempdimb
498 \@tempdimb=\@tempdimb
499 \fi

We create an invisible rule with that height and depth, and make sure we have a
valid delimiter if the optional argument is empty.

500 \def\@tempa{\vrule width0pt height\@tempdima depth\@tempdimb}
501 \def\@tempb{#1}
502 \ifx\@empty\@tempb
503 \def\@tempb{.}
504 \fi

Finally, we use a null left delimiter to balance the middle delimiter, and then a
left brace to balance the right brace. The rule is set inside both pairs so that they
scale identically. Note the use of \expandafter so that when the first \right is
expanded, it can grab the delimiter in \@tempb.

505 \left.\left\{ \@tempa{#2} \,\expandafter\right\@tempb\,{#3} \right\} }}

For backwards compatibility, I make two aliases for \set; the old commands re-
quired the user to specify the larger side of the set definition in order to get sizing
correct.

506 \alias\setl\set
507 \alias\setr\set

Here are some macros for typesetting sets symbolically. First off, we might
want to know how to typeset a level set.

508 \newcommand{\lvl}[2][\alpha]{\Gamma\ssb{#2}\ssp{(#1)}}

There are also fuzzy sets, and their corresponding level sets.

509 \if@amsmath
510 \newcommand{\fset}[1]{\Tilde{#1}}
511 \else
512 \newcommand{\fset}[1]{\tilde{#1}}
513 \fi
514 \newcommand{\flvl}[2][\alpha]{\lvl[#1]{\fset{#2}}}

For want of a better font, I will typeset set collections in \mathcal.

515 \alias\coll\mathcal

22

Finally, we deal with some set operators. The TEXbook points out the dif-
ference between \setminus and \backslash. I prefer to think of them as ‘set
complementation’ and ‘coset’, respectively.

516 \alias\scomp\setminus
517 \alias\coset\backslash

The next macro attempts to create a symmetric difference operator. I don’t like
it, but I probably won’t do better until I learn to make my own METAFONT
characters. . .

518 \newcommand{\symmdiff}{%
519 \mathbin{\text{\footnotesize\bigtriangleup}}}

2.5 Sequences and series

Just a few macros are required for various sequences and series, mostly for index-
ing. The best explanation is simply an example. The code

$y \in \seq{x_{ij}}$, where $i\inset{n}$, $j\inrange[0]{m}$

produces

y ∈ {xij}, where i ∈ {1, . . . , n}, j = 0, . . . , m.

520 \newcommand{\seq} [1] {\curlybrackets{#1}}
521 \newcommand{\inset} [2][1]{\in\{ #1,\ldots,#2 \}}
522 \newcommand{\inrange}[2][1]{ = #1,\ldots,#2}

2.6 Calculus

The calculus macros are relegated to auxiliary files, as I rarely need them.

2.6.1 Derivatives

We load the derivatives in if they are requested.

523 \if@derivatives
524 \InputIfFileExists{cjwderiv.tex}{}{%
525 \PackageWarning{cjwmath}{Option ‘cjwderiv.tex’ not found.}
526 \@@derivativesfalse}
527 \fi

This loads both simple and partial derivative macros.
The derivatives are all variations on the basic \dd macro, which should be

fairly self explanatory.

528 \newcommand{\dd} [2]{\frac{d#1}{d#2}}
529 \newcommand{\ddt}[1]{\dd{#1}{t}}
530 \newcommand{\ddu}[1]{\dd{#1}{u}}
531 \newcommand{\ddv}[1]{\dd{#1}{v}}
532 \newcommand{\ddx}[1]{\dd{#1}{x}}
533 \newcommand{\ddy}[1]{\dd{#1}{y}}

23

534

535 \newcommand{\sdd} [2]{\frac{d^2#1}{d#2^2}}
536 \newcommand{\sddx}[1]{\sdd{#1}{x}}
537 \newcommand{\sddy}[1]{\sdd{#1}{y}}
538 \newcommand{\sddt}[1]{\sdd{#1}{t}}
539 \newcommand{\sddu}[1]{\sdd{#1}{u}}
540 \newcommand{\sddv}[1]{\sdd{#1}{v}}

2.6.2 Partial derivatives

The partial derivatives are all variations on the theme of \pard, which is as \dd,
replacing the d with ∂.

541 \newcommand{\pard} [2]{\frac{\partial#1}{\partial#2}}
542 \newcommand{\pardx}[1]{\pard{#1}{x}}
543 \newcommand{\pardy}[1]{\pard{#1}{y}}
544 \newcommand{\pardz}[1]{\pard{#1}{z}}
545 \newcommand{\pardu}[1]{\pard{#1}{u}}
546 \newcommand{\pardv}[1]{\pard{#1}{v}}
547 \newcommand{\pardt}[1]{\pard{#1}{t}}
548

549 \newcommand{\spard} [2]{\frac{\partial^2#1}{\partial#2^2}}
550 \newcommand{\spardx}[1]{\spard{#1}{x}}
551 \newcommand{\spardy}[1]{\spard{#1}{y}}
552 \newcommand{\spardz}[1]{\spard{#1}{z}}
553 \newcommand{\spardu}[1]{\spard{#1}{u}}
554 \newcommand{\spardv}[1]{\spard{#1}{v}}
555 \newcommand{\spardt}[1]{\spard{#1}{t}}
556
557 \newcommand{\spardxy}[1]{\frac{\partial^2#1}{\partial x\partial y}}
558 \newcommand{\spardyx}[1]{\frac{\partial^2#1}{\partial y\partial x}}
559 \newcommand{\spardxz}[1]{\frac{\partial^2#1}{\partial x\partial z}}
560 \newcommand{\spardzx}[1]{\frac{\partial^2#1}{\partial z\partial x}}
561 \newcommand{\spardyz}[1]{\frac{\partial^2#1}{\partial y\partial z}}
562 \newcommand{\spardzy}[1]{\frac{\partial^2#1}{\partial z\partial y}}

2.6.3 Integrals

We load the integrals in if they are requested.

563 \if@integrals
564 \InputIfFileExists{cjwinteg.tex}{}{%
565 \PackageWarning{cjwmath}{Option ‘cjwinteg.tex’ not found.}
566 \@@integralsfalse}
567 \fi

The first macro is simply a variation of \int using the \limits macro.

568 \def\integ{\mathop{\int}\limits}

Next we have a small shortcut for the differential at the end of an integral. We
work around LATEX’s font encoding macro.

569 \alias\latex@d\d
570 \renewcommand{\d}{\,d}

24

We have macros for double and triple integrals, with and without \limits.

571 \newcommand{\dint}{\int\!\!\!\int}
572 \newcommand{\dinteg}{\mathop{\int\!\!\!\int}\limits}
573 \newcommand{\tint}{\int\!\!\!\int\!\!\!\int}
574 \newcommand{\tinteg}{\mathop{\int\!\!\!\int\!\!\!\int}\limits}

To be honest, I have no idea why I wrote this one. It is probably buried in a
homework file of mine somewhere, but I’ll be a fiddler crab if I can remember
where. . .

575 \newcommand{\flushintlim}[1]{{ #1}}

2.7 Algebra

We define how to typeset an algebra.

576 \alias\alg\mathbbm

2.7.1 Fields

A field will also be done in blackboard bold.

577 \alias\field\mathbbm

The following fields are defined.

578 \newcommand{\C}{\field{C}} % Complex
579 \newcommand{\E}{\field{E}} % Euclidean (also Evens)

Note that � is a LATEX accent, so we save it away before redefining it as a field.

580 \alias\latex@H\H % Quaternions
581 \renewcommand{\H}{\field{H}} % (Hamiltonian field)
582 \newcommand{\N}{\field{N}} % Natural numbers
583 \newcommand{\Q}{\field{Q}} % Rationals
584 \newcommand{\R}{\field{R}} % Reals
585 % \newcommand{\Rn}[1][n]{\R^{#1}}
586 \newcommand{\Z}{\field{Z}} % Integers
587 \newcommand{\pr}{\field{P}} % Primes

2.7.2 Groups

Remember \NewMathOp? One use for it is in defining mathematical groups. Here
are a bunch.

588 % Groups are typeset as operators.
589 \NewMathOp {\Aut}{Aut} % Automorphisms
590 \NewMathOp {\End}{End} % Endomorphisms
591 \NewMathOp {\GL}{GL} % General Linear
592 \NewMathOp {\Inn}{Inn} % Inner products
593 \NewMathOp {\Pin}{Pin} % Pin
594 \NewMathOp {\SL}{SL} % Special Linear
595 \NewMathOp {\SO}{SO} % Special Orthogonal
596 \NewMathOp {\SU}{SU} % Special Unitary
597 \NewMathOp[\mathfrak]{\Sn}{S} % Symmetric
598 \NewMathOp {\Spin}{Spin} % Spin
599 \NewMathOp {\Sp}{Sp} % Symplectic

25

600 \NewMathOp {\Unit}{U\kern 0pt}% Unitary
601 \NewMathOp {\Orth}{O\kern 0pt}% Orthogonal
602 \NewMathOp[\mathfrak]{\slin}{sl} % Tangent group to SL
603 \NewMathOp[\mathfrak]{\so}{o\kern 0pt} % skew orthogonal
604 \NewMathOp[\mathfrak]{\sp}{sp} % skew symplectic
605 \NewMathOp[\mathfrak]{\su}{u\kern 0pt} % skew hermitian

2.7.3 Linear algebra

If matrices are to be typeset specially, we will use the \mathcal font.

606 \alias\mtx\mathcal

I have often seen the letter Θ used for the matrix of zeros. I like it that way.

607 \newcommand{\nullmtx}{\mtx\Theta}

Taken from Horn and Johnson, a matrix norm can be represented with a triple-bar
delimiter.

608 \newcommand{\mnorm}[1]{%
609 \left\vert\kern-0.9pt\left\vert\kern-0.9pt\left\vert #1
610 \right\vert\kern-0.9pt\right\vert\kern-0.9pt\right\vert}

We define the Lie product of two matrices.

611 \newcommand{\lie}[1]{\squarebrackets{#1}}

There is an for the trace (Spur, auf Deutsch) of a matrix. . .

612 \NewMathOp{\Spur}{Spur}
613 \NewMathOp{\Tr}{Tr}

. . . as well as for diagonal matrices.

614 \NewMathOp{\Diag}{Diag}

This is a shortcut for putting delimiters around matrices. With AMS-LATEX,
we use an environment, taking as its two mandatory arguments the left and right
delimiters, respectively.

615 \if@amsmath
616 \newenvironment{arbmatrix}[2]%
617 {\def\@tempa{#2}\left#1 \matrix}{\endmatrix \right\@tempa}

Without AMS, we use a command as does standard LATEX, and define some basic
types.

618 \else
619 \newcommand{\arbmatrix}[3]{\left#1 \matrix{#2} \right#3}
620 \providecommand{\bmatrix}[1]{\arbmatrix[{#1}]}
621 \providecommand{\vmatrix}[1]{\arbmatrix|{#1}|}
622 \fi

The next bit of code is used to enter sparse matrices which are often repre-
sented in the literature with an oversized zero marking the region of zeros. This
takes more than a bit of trickery in LATEX. The oversized digit will be put in a
box, which in most cases needs horizontal and/or vertical adjustment from the
position where it is placed in the matrix by default. The default vertical offset
will be called \numoffset, and is set by default to the height of a \Bigmathstrut.

623 \newlength{\numoffset}

26

624 {\setbox0=\hbox{\Bigmathstrut}
625 \@tempdima=0.8\ht0\relax
626 \global\numoffset\@tempdima}

Occasionally, one might wish to use something other than a zero as the oversized
digit. We define a generic \Number macro to be used. The usage is

\Number[〈raise〉]{〈num〉}

where 〈raise〉 is the amount by which the number is raised and 〈num〉 is the
number to be used.

627 \newcommand{\Number}[2][-\numoffset]{%
628 \@tempdima=#1\relax
629 \smash{\hbox{\raise\@tempdima\@bignumber{#2}}}}

The macros \@bignumber is called to do the dirty work of typesetting the number.

630 \newcommand{\@bignumber}[1]{\hbox{\LARGE$#1$}}

Now, the horizontal adjustment mentioned earlier usually refers to the need to have
the large digit straddle two columns in a matrix. This is easily accomplished with
\multicolumn. Here things start to get ugly, though; \multicolumn must be the
first thing after the & in the array. But the reasonable way to include an optional
argument to be passed through to \Number is to use the \newcommand feature,
which ends up putting junk in the way—this is exactly the same problem which
arose in writing \mathbox earlier. Therefore, there are currently two separate
commands, one which takes the optional argument, and one which doesn’t. I
would really like to remedy this if I ever figure out how.

631 \def\bignumber #1{\multicolumn{2}{c}{\Number{#1}}}
632 \def\Bignumber[#1]#2{\multicolumn{2}{c}{\Number[#1]{#2}}}

Here are some specific cases for using zero, as is most commonly the case.

633 \newcommand{\Zero}[1][-\numoffset]{\Number[#1]{0}}
634 \def\bigzero {\bignumber{0}}
635 \def\Bigzero[#1]{\Bignumber[#1]{0}}

From this we wish to construct various types of matrices. Each variation will
have two versions, depending on whether or not AMS-LATEX has been invoked.
Each version, though, has an optional argument which is what will be passed
through as 〈raise〉 to \Bigzero. The names of each matrix are an attempt to
indicate the layout. For example, the command \iidiagi takes three mandatory
arguments which will be the diagonal entries, the first two in the upper left, and
the third in the lower right with \ddots separating them. Likewise, we have
\idiagii and \idiagi.

636 \if@amsmath
637 \newcommand{\iidiagi}[4][-\numoffset]{% % 2 0
638 \begin{bmatrix} % 3
639 #2 & & \Bigzero[#1] \\ % .
640 & #3 & & \\ % .
641 \Bigzero[#1] & \ddots & \\ % 0 4
642 & & & #4
643 \end{bmatrix}}
644 \newcommand{\idiagii}[4][-\numoffset]{% % 2 0
645 \begin{bmatrix} % .

27

646 #2 & & \Bigzero[#1] \\ % .
647 & \ddots & & \\ % 3
648 \Bigzero[#1] & #3 & \\ % 0 4
649 & & & #4
650 \end{bmatrix}}
651 \newcommand{\idiagi}[3][-1.2pt]{% % 2 0
652 \begin{bmatrix} % .
653 #2 & \Bigzero[#1] \\ % .
654 & \ddots & \\ % .
655 \Bigzero[#1] & #3 % 0 3
656 \end{bmatrix}}
657 \else
658 \newcommand{\iidiagi}[4][-\numoffset]{% % 2 0
659 \matrix{% % 3
660 #2 & & \Bigzero[#1] \\ % .
661 & #3 & & \\ % .
662 \Bigzero[#1] & \ddots & \\ % 0 4
663 & & & #4}}
664 \newcommand{\idiagii}[4][-\numoffset]{%
665 \pmatrix{% % 2 0
666 #2 & & \Bigzero[#1] \\ % .
667 & \ddots & & \\ % .
668 \Bigzero[#1] & #3 & \\ % 3
669 & & & #4}} % 0 4
670 %
671 \newcommand{\idiagi}[3][-1.2pt]{% % 2 0
672 \pmatrix{% % .
673 #2 & \Bigzero[#1] \\ % .
674 & \ddots & \\ % .
675 \Bigzero[#1] & #3}} % 0 3
676 \fi

We now wish to typeset the transpose of a matrix. The most general form is

\@trans[〈pre〉]{〈post〉}

which expands to ‘^{〈pre〉t〈post〉}’. Next is \trans which takes a single optional
argument for 〈post〉 (no 〈pre〉).

677 \newcommand{\@trans}[2][]{^{#1\text{\normalfont\textsf{t}}#2}}
678 \newcommand{\trans} [1][]{\@trans[]{#1}}

Why? I don’t know—I needed \trinv, below, and decided to generalize.

679 \newcommand{\trinv} {\@trans[-]{}}

For backwards compatibility, I have \ct{〈mtx 〉} to represent matrix 〈mtx 〉 as
conjugated and transposed.

680 \newcommand{\ct}[1]{\conj{#1}\trans}

The next topic is vectors. I prefer \vec to be logical markup as opposed to a
specific accent. Thus, I create an alias \sarvec (short arrow vector) for the original
\vec, and another alias \arvec for a long arrow, which is just \overrightarrow.

681 \alias\sarvec\vec
682 \alias\arvec \overrightarrow

28

The actual typesetting I prefer for vectors (when I use anything at all) is boldface.
This requires the \Mathbox command defined earlier so that the argument can be
set in a bold math version.

683 \renewcommand{\vec}[1]{\Mathbox{\boldmath}{#1}}

To typeset vectors in long form simply uses the \matrix command—but this
depends, again, on whether AMS-LATEX is being used. In either case, a single
argument—the contents of the vector—is required. Simply delimit with \\ for
column vectors and & for rows.

684 \if@amsmath
685 \newcommand{\bvec}[1]{%
686 \begin{bmatrix}#1\end{bmatrix}}
687 \newcommand{\pvec}[1]{%
688 \begin{pmatrix}#1\end{pmatrix}}

There are also two aliases for row vectors for backwards compatibility.

689 \alias\brvec\bvec
690 \alias\prvec\pvec
691 \else
692 \newcommand{\bvec}[1]{\bmatrix{#1}}
693 \newcommand{\pvec}[1]{\pmatrix{#1}}
694 % \newcommand{\bvec}[2][r]{%
695 % \left[\begin{array}{#1}#2\end{array} \right]}
696 % \newcommand{\pvec}[2][r]{%
697 % \left(\begin{array}{#1}#2\end{array} \right)}
698 \fi

The null vector, like the null matrix, is given with θ.

699 \newcommand{\nullvec}{\vec{0}}

Once we have vectors, we need dot products. The simple version just puts its
argument inside angled brackets.

700 \newcommand{\dotp}[1]{\anglebrackets{#1}}

If special vector notation is required, the two arguments should be separated by a
comma (which should be the case anyway), and then each half is passed to \vec.

701 \newcommand{\vdotp}[1]{\@vdotp#1@@@}
702 \def\@vdotp #1,#2@@@{\dotp{\vec #1,\vec #2}}

We define some other vector operators to go with the dot product. These are
the curl, the divergence, and the Laplacian. These are usually read as ‘del dot’,
‘del cross’, and ‘del squared’, so the first thing to do is rename the \nabla(?).

703 \newcommand{\del} {\vec\nabla}

LATEX defines \div, so we rename that and renew the command.

704 \alias\@@div\div
705 \renewcommand{\div}{\del\dot}

Finally, we have the other two.

706 \newcommand{\curl} {\del\cross}
707 \newcommand{\lapl} {\del^2}

29

In German texts, the linear hull is usually represented as a list of vectors in
square brackets.

708 \alias\huelle\squarebrackets

2.8 Operators

This section is simply a gathering point for all sorts of mathematical operators—
not in the \NewMathOp sense, like various groups defined above, but in the sense of
mathematical doohickies which take one or two operands and give you something
new.

2.8.1 Binary operators

What we have first is a whole bunch of names for the large, ‘x’-like times symbol. In
the case of specifying dimension (as in, a 4-by-3 matrix), we declare it a \mathord
so as not to invoke binary spacing. Then \mal is simply German for ‘times’, and
\cross is the vector space (or group) product using the same symbol.

709 \newcommand{\by}{\mathord{\times}}
710 \alias\mal \times
711 \alias\cross \times

To indicate isomorphism, I have most often used an equals sign with a tilde above
it.

712 \alias\iso \simeq

This next one stretches the usefulness of aliasing by defining an operator for normal
subgroups.

713 \alias\nsubgrp \trianglelefteq

Next we specify a congruence symbol.

714 \realias\cong \equiv

In graph theory, we want a symbol for adjacency of nodes.

715 \alias\adj\leftrightarrow

We unconditionally define \Box to be a square operator symbol.

716 \providecommand{\Box}{}
717 \renewcommand{\Box}{\mathbin{\square}}

We give a number theoretic division relation, in English and German.

718 \newcommand{\teilt}{\mathbin{|}}
719 \alias\divides\teilt

Once upon a time I wanted a ‘big dot’ operator.

720 % \newcommand{\bdot}{\mathop{\lower0.33ex\hbox{\LARGE\cdot}}}

We can use LATEX’s built-in \stackrel to create a definition relation.

721 \newcommand{\defeq}{\stackrel{\text{def}}{=}}

30

The symbol I first saw used to indicate disjoint union was a union ‘cup’ with a bar
through the middle. Using a naming convention similar to AMS-LATEX’s \Uplus
we get text and display versions.

722 \newcommand{\uminus}{%
723 \,\,{\mathbin{\cup\kern-.6em{\raise.05em%
724 \hbox{-\negthinspace-\kern-.25em-}}}}\,\,}
725 \newcommand{\Uminus}{%
726 \mathop{\bigcup\kern-0.9em{\raise.05em%
727 \hbox{-\negthinspace-\kern-.25em-}}}}

We define some handy names for various arrows.

728 \providecommand{\implies}{\;\Longrightarrow\;}
729 \alias\then\implies
730 \if@amsmath
731 \newcommand{\when}{\DOTSB \;\Longleftarrow \;}
732 \else
733 \newcommand{\when}{\;\Longleftarrow \;}
734 \fi

The following can be used when tracing a series of implications through a multiline
equation environment, for example.

735 \newcommand{\limplies}{\llap{\implies}\quad}

Based on The TEXbook, I have written a ‘skewed’ fraction, which uses a diagonal
separator.

736 \newcommand{\sfrac}[2]{%
737 \hbox{\kern 0.1em%
738 \raise 0.5ex\hbox {\scriptsize$#1$}%
739 \kern -0.1em $/$%
740 \kern -0.15em%
741 \lower 0.25ex\hbox {\scriptsize$#2$}}%
742 \kern 0.2em}

If we are not using AMS-LATEX, the following well not yet be defined.

743 \providecommand{\tfrac}{\sfrac}
744 \providecommand{\dfrac}[2]{{{#1}\over{#2}}}

2.8.2 Unary operators

I most often use the longer versions of various math accents, so I redefine them
by default to be long. The short ones are saved in a macro with identical name
save for a prepended ‘s’ (as we have already seen for \arvec and \sarvec). The
simple ones are bars, tildes, and hats.

745 \alias\sbar\bar
746 \renewcommand{\bar}[1]{\overline{#1}}
747 \alias\stilde\tilde
748 \alias\retilde\widetilde
749 \alias\shat\hat
750 \realias\hat\widehat

We need something better than the default real- and imaginary-part macros.

751 \renewcommand{\Im}{%

31

752 \mathop{\mathfrak{Im}}}
753 \renewcommand{\Re}{%
754 \mathop{\mathfrak{Re}}}

Complex conjugation is usually denoted by a bar.

755 \alias\conj \bar

Inversion of various types is used often enough to warrant a control sequence.

756 \newcommand{\inv}{^{-1}}

To denote power sets, I have used to different alternatives. The default is the
standard \wp symbol—I don’t know what it is supposed to be used for, but it can
be modified for the task. On the other hand, if we have a real math script font
(as one might have if using my callig style. . .) we will certainly use that.

757 \@ifundefined{mathscript}
758 {\newcommand{\Pow}{\raise 0.4ex\Mathbox{\Large}{\wp}}}
759 {\NewMathOp[\mathscript]{\Pow}{P}}

And what macro would be complete without a German alias? (Auf Deutsch, die
Potenzmenge.)

760 \alias\Pot\Pow

We can leave the letter ‘I’ to computer scientists who don’t know how to write an
indicator function. For our purposes, we want the neat-o-keen blackboard bold
font.

761 \newcommand{\1}{\mathbbm{1}}

Next we have some trigonometric shortcuts.

762 \alias\acos\arccos
763 \alias\asin\arcsin
764 \alias\atan\arctan

Using our generic bracketing macros from earlier, we have absolute value, cardi-
nality (order of a set), cyclic generators, and norms.

765 \alias\abs \vertbrackets
766 \alias\ord \abs
767 \alias\cyc \anglebrackets
768 \alias\norm\Vertbrackets

Multiple sums are recurrent enough (no pun intended :-)) to get macros. We
have double sums, triple sums, and n-fold sums.

769 \newcommand{\dsum}{\mathop{\sum\sum}\limits}
770 \newcommand{\tsum}{\mathop{\sum\sum\sum}\limits}
771 \newcommand{\nsum}{\mathop{\sum\sum\cdots\sum}\limits}

The next two macros indicate monotone limits, respectively ascending
(mnemonic ‘limit up’) and descending (you guessed it—‘limit down’).

772 \NewMathOp*{\ulim}{lim\raise0.4ex\mathbox{\mathord{\smash{\uparrow}}}}
773 \NewMathOp*{\dlim}{lim\raise0.4ex\mathbox{\mathord{\smash{\downarrow}}}}

Finally we have the miscellany, where we can really go to town with
\NewMathOp! These should be pretty clear, unless you don’t do math in German,
in which case some will be pretty odd.

32

774 \NewMathOp*{\argmax}{arg\,max} % arg min
775 \NewMathOp*{\argmin}{arg\,min} % arg min
776 \NewMathOp {\Aff} {Aff} % Affine hull
777 \NewMathOp {\Bild} {Bild} % Bild
778 \NewMathOp {\Cone} {Cone} % Cone
779 \NewMathOp {\Conv} {Conv} % Convex hull
780 \NewMathOp {\Core} {Core} % Fuzzy set core
781 \NewMathOp {\diam} {diam} % diameter
782 \NewMathOp {\dom} {dom} % Domain
783 \NewMathOp {\Epi} {Epi} % Epigraph
784 \NewMathOp*{\esssup}{ess\,sup} % Essential supremum
785 \NewMathOp {\fl} {fl} % float-point
786 \NewMathOp {\ggT} {ggT} % ggT
787 \NewMathOp {\Grad} {Grad} % Grad
788 \NewMathOp {\Hypo} {Hypo} % Hypograph
789 \NewMathOp {\Int} {Int} % Interior
790 \NewMathOp {\Kern} {Kern} % Kernel
791 \NewMathOp {\kgV} {kgV} % kgV
792 \NewMathOp {\Lin} {Lin} % Linear hull
793 \NewMathOp {\lcm} {lcm} % LCM
794 \NewMathOp {\Ord} {Ord} % order
795 \NewMathOp {\proj} {proj} % Projection
796 \NewMathOp {\Rang} {Rang} % Rang
797 \NewMathOp {\range} {range} % Range
798 \NewMathOp {\Rank} {Rank} % Rank
799 \NewMathOp {\rot} {rot} % Rotation
800 \NewMathOp {\Span} {Span} % Span
801 \NewMathOp {\val} {val} % value

2.9 Physics

Now, since physics is a subset of mathematics, physics macros are invoked from
within the math macro file.

802 \if@physics
803 \InputIfFileExists{cjwphys.tex}{}{%
804 \PackageWarning{cjwmath}{Option ‘cjwphys.tex’ not found.}
805 \@@physicsfalse}
806 \fi

The only thing really specific to physics that I ever used—meaning not appli-
cable in any more general mathematical setting—was the bra/ket notation. Here
we have bras (bræ?), kets, and brakets, the latter of which bear uncoincidental
resemblance to the \set macro.

807 \newcommand{\bra}[1]{\left\langle #1 \right|\,}
808 \newcommand{\ket}[1]{\,\left| #1 \right\rangle}
809

810 \newcommand{\braket}[2]{%
811 \newdimen\@tempdimd%
812 \setbox0=\mathbox{#1}\@tempdima=\ht0 \@tempdimb=\dp0%
813 \setbox0=\mathbox{#2}\@tempdimc=\ht0 \@tempdimd=\dp0%
814 \ifdim\@tempdimc > \@tempdima
815 \@tempdima=\@tempdimc
816 \fi

33

817 \ifdim\@tempdimd > \@tempdimb
818 \@tempdimb=\@tempdimb
819 \fi
820 \def\@tempa{\vrule width0pt height\@tempdima depth\@tempdimb}
821 \left.\left\langle \@tempa{#1} \,\right|\,{#2} \right\rangle }

2.10 Probability

Here comes that \NewMathOp thingie again. First thing is to define some standard
probabilistic operators, which really need to be typeset in an operator font in order
not to look horrible.

822 \NewMathOp{\Prob} {P} % Probability operator
823 \NewMathOp{\Corr} {Corr} % Correlation
824 \NewMathOp{\Cov} {Cov} % Covariance
825 \NewMathOp{\Expct}{E} % Expectation
826 \NewMathOp{\SD} {SD} % Standard Deviation.
827 \NewMathOp{\Var} {Var} % Variance

Here is a macro to put inside of some of those operators where conditional events
are being considered.

828 \newcommand{\given}{\,|\,}

Usually a single tilde, which as an operator bears the name of \sim in LATEX,
indicates a distribution. Hence, we make an alias.

829 \alias\distrib\sim

And coming back to \NewMathOp, we define some standard distributions. . .

830 \NewMathOp{\Bin} {Bin} % Binary dist.
831 \newcommand{\Nbin}{-\!\Bin} % Negative Binom.
832 \NewMathOp{\Exp} {Exp} % Exponential dist.
833 \NewMathOp{\Geom}{Geom} % Geometric dist.
834 \NewMathOp{\Norm}{Norm} % Normal dist.
835 \NewMathOp{\Poi} {Poi} % Poisson dist.
836 \NewMathOp{\Unif}{Unif} % Uniform dist.

. . . and the normal density and distribution functions (which might also be repre-
sented as Φ and φ).

837 \NewMathOp[\mathfrak]{\Ndens}{N}
838 \NewMathOp[\mathfrak]{\Ndist}{n}

The last thing to do is create some macros for probabilistic modes of convergence.
We go, again, from the general to the specific.

839 \NewMathOp*{\@mapsto}{\mapstochar\rightarrow}
840 \newcommand{\@probconv}[1]{\mathrel{\@mapsto\limits^{1}}}
841 \newcommand{\asconv}{\@probconv{a.s.}} % Almost sure conv.
842 \newcommand{\inprob}{\@probconv{P}} % Conv. in probability
843 \newcommand{\inlaw} {\@probconv{L}} % Conv. in law
844 \newcommand{\vague} {\@probconv{v}} % Vague conv.

34

3 Units

The package cjwunits simply standardizes how to typeset units (or dimensions—
things such as seconds, meters, and so forth). Most of the work is done by defining
a pretty simple macro, \unit. The rest is just a collection of standard units which
may be invoked (meaning ones I have used, and therefore stuck into the file).

3.1 Package initialization

The initialization does most everything. We first specify a font for the unit types.

845 \newcommand{\unitfont}{\operator@font}

Now the workhorse of the package is defined. It is pretty foolproof, in that it can
be invoked in or out of math, may or may not be followed by explicit space, and
the font as defined above is pretty customizable.

846 \newcommand{\unit}[1]{\ensuremath{\,{\unitfont{#1}\kern\z@}}\xspace}

Now come the examples.

3.2 Distance
847 \newcommand{\ang} {\unit{\AA}} % angstroms
848 \alias\Ao\ang
849 \newcommand{\cm} {\unit{cm}} % centimetres
850 \newcommand{\inch}{\unit{in}} % inches
851 \newcommand{\km} {\unit{km}} % kilometres
852 \newcommand{\mi} {\unit{mi}} % miles
853 \newcommand{\m} {\unit{m}} % metres

3.3 Electricity and magnetism
854 \newcommand{\Hz} {\unit{Hz}} % herz
855 \newcommand{\J} {\unit{J}} % joules
856 \newcommand{\V} {\unit{V}} % volts
857 \newcommand{\eV} {\unit{eV}} % electron volts
858 \newcommand{\erg} {\unit{erg}} % ergs

3.4 Mass
859 \newcommand{\amu} {\unit{amu}} % atomic mass units
860 \newcommand{\gram}{\unit{g}} % grams
861 \newcommand{\kg} {\unit{kg}} % kilograms
862 \newcommand{\Ton} {\unit{T}} % tons
863 \newcommand{\kT} {\unit{kT}} % kilotons
864 \newcommand{\MT} {\unit{MT}} % megatons

3.5 Thermodynamics
865 \newcommand{\kelv}{\unit{K}} % kelvins

3.6 Time

It seems that \sec already means secant, so we need a preservation and renewal
here.

35

866 \alias\secant\sec
867 \renewcommand{\sec} {\unit{s}} % seconds

3.7 Velocity
868 \newcommand{\cee} {\unit{c}} % speed o’ light

36

